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Here we derive an asymptotic expression for the pressure attenuation curve for the relaxation theory of percolation 
[flow through a porous medium], in which there is a family of purely dissipative internal relaxation processes when a saturated 

fluid flows through rock. The asymptote has been derived for the initial part of  the pressure attenuation curve [1]; here we 
derive the curve for longer times - times on the same order as the internal relaxation times. 

We recall the basic theory of isothermal relaxation flow in an undeformed homogeneous isotropic collector [2-6]. 
In the relaxation theory of percolation, Darcy 's  law 

OG . t zJ), G p + p~ ui( t ,z  j) = - k / z - t  ~z i (  , = (1) 

is replaced by the relaxation equation 
+ 0 0  

�9 0 G  . 

u'(to, z:) = - k #  -1 f K(to - t) -ff~zi(t, z ~) dt. (2) 
- - C O  

In Eqs. (1) and (2), u d is the percolation velocity, k is the permeability, g is the shear viscosity of the fluid, p is the pressure, 
p is the density, and 9 is the gravitational potential. 

The kernel K = K(t) characterizes the internal relaxation processes in system of the porous medium plus the saturated 
fluid. It is subject to a series of conditions which follow from physical and thermodynamic considerations. 

1. K(t) is a non-negative, monotonically decreasing function with dimensions of (time)-1. 
+ O o  

2. [ /K(t) = I is the condition for reducing (2) to (I)  for slow processes. 
, , /  

- t 3 o  

3. K(t) = 0 for t < 0 (causality); K(0) < + oo is the condition for a finite signal velocity [7]. 

For an arbitrary function of time f = fit), we use fF = fF(o:) to denote its Fourier transform: 
+co 

fF(W) = / e- i~t f( t)  dr. 

According to the Payley-Wiener theorem [8], condition 3 makes the function K F = Ke(~o ) holomorphous in the lower 
half of the complex plane. It has been shown [6,7] that there is a dissipation condition 

4. Re KF(~o) > 0 for Im(~o) < 0. 

From condition 2 it follows that 

KF(0)  = 1. (3) 

From condition 3 it follows that the asymptote 

KF(.,) = k,(i .~)- '  + o(l~l-x), 
is valid in the holomorphous region. 

k, = K(O) .  
(4) 

Institute of Earth Physics, Russian Academy of Sciences, 123810 Moscow. Translated from Prikladnaya Mekhanika 
i Tekhnicheskaya Fizika, No. 2, pp. 119-125, March-April, 1995. Original article submitted May 10, 1994. 

252 0021-8944/95/3602-0252512.50 �9 Plenum Publishing Corporation 



Because the kernel K is real, 

KF(~O) = K F ( - ~ ) ,  Imw < 0. (5) 

Now we examine a specific functional form of the relaxation kernel in more detail. Because K F is holomorphous in 

the lower half of  the complex plane, the function form of the kernel is determined by singularities in the upper half of the 

complex plane. The contribution from "pole" singularities has the form Ao/(O~ - COo). 

We now assume that the porous med ium-  saturated fluid system has a discrete spectrum of purely dissipative internal 

relaxation processes. Then the relaxation kernel can be represented as 

N 

K ( t )  = ~ ,  A ~ r ~ a e x p ( - t / r , ~ ) ,  (6) 
r t m l  

where the r n are the corresponding relaxation times (0 < Zn+ 1 < rn), and the A n > 0 are the weighting factors. The Fourier 

transformation of (6) takes the form 
N 

A'r(~) = ~ A,~( 1 + i ~ r , )  -1 . (7) 
r t ~ l  

It is easy to verify that conditions 1, 3, and 4 are fulfilled. From (3) it follows that 

N 

1 = 1~v(0)= ~ ,-I.. (8) 

We now examine pressure attenuation in cylindrical symmetry and limit ourselves to the linear approximation. For the 

equation of state we use 

P = Po + E(p - po)Po 1 , (9) 

where E is the elastic bulk modulus of the fluid. 

Mass must be conserved locally as the fluid flows through the porous medium: 

O ( m p )  + ~---~(pu ~) = O, (10) 

where m is the porosity. By substituting Eqs. (2) and (9) into Eq. (10) and linearizing the result, and by considering the 

cylindrical symmetry, we obtain the integrodifferential equation 

O--~pItu. r) = w ft'(to - t ) A p ( t . r ) d t .  (11) 
"-,7*7. 

8 2 
Here ~e = kE/(mtO; r is the distance from the well axis; and A = + r_  1 __a is the Laplacian operator. The parameter 

Or 2 Or 

r varies in the range r I _< r _ r 2, where r 1 is the well radius and r 2 is the recharge radius. If  the well operates with a yield 

q = q(t) per unit thickness of the productive bed, then we have the boundary condition 

+co / 0 
q(t) = A K( to  - t ) - ~ r p ( t ,  r l ) d t ,  A = 2rrlPo# -1. 

(12) 

In addition, there must be a boundary condition on the recharge boundary 

p(t, r2) = Pbcd" (13) 

The problem (11)-(13) is linear; therefore it can be solved by the Fourier-Laplace transform method. In order to simplify the 
resultant equations, we will hereafter use a system of units in which 

253 



ae=  ri = 1. (14) 

BeCause ~e has units of (length)2/time, Eq. (14) hereafter fixes the units of  length and time. 

We now introduce a new unknown function 

P = P(t,r) = p(t,r) - Pbed" 

By taking the Fourier transform of (1!)-(13),  we obtain the differential equation 

( A  - a2)Pe = 0 (15) 

with the boundary conditions 

�9 OPF pFI~_~2 O. 
qF AKF ~ r=l' and _ = 

In Eq. (15), e~ = ~(~) is a complex function determined by the relationships 

(16) 

a 2 = iw/KFCw),  and Re a >_ O. (17) 

We now show that Eqs. (17) determine a holomorphous function a = ~(o~) for Im o~ < 0 which is continuous all the 

way to the real axis. 
In truth, the function o~ = c~(~) can become discontinuous only at points ~ at which Re ~ = 0 and lm w # 0; i.e., 

where 

R e a  2 < 0, and I m a  2 = 0 .  (18)  

We note that 

hn a 2 = Re~, Re A'F + Im~' Im A'F (19) 
[l(v[ 2 

and 

+t'2~ 

Im h 'v ( , ; )  = - f et lm~sin(t  Re~, ')h '( t)dt .  

0 

(20) 

Because the kernel is monotonic, it follows from (20) that (Re w)(Im K F) < O. Now it follows from Eq. (19) and 

condition 4 that Im t~ 2 has the same sign as Re w. If Re w = 0, then K F = Re K F and ~2 > O. Therefore the condition (18) 

is impossible at all points in the lower half of the complex plane. 

Thus, it has been proven that o~(w) is holomorphous in the lower half of  the complex plane. Because K F is holo- 

morphous and can be continued into the upper half of the complex plane [see (7)], then the function ~(w) can be also. Here 

it will have singularities related to poles and zeroes in the function KF(W) as well as to the procedure of  extracting the root in 

(17). 

Now we examine a more specific function F(s) = K~(is) for s > 0. According to (5) this function takes on real values. 

Analysis of Eq. (7) shows that F(s) increases monotonically in each of the intervals 0 < s < Yl, Yl < s < Y2 . . . . .  

YN-I  < s < YN, where yi = rT I, and tends to +0o as s approaches yi. Thus, points s 1 . . . . .  SN_ 1 exist, where this function 

becomes zero, so that Yi < si < Yi+l.  We define s o = 0. Because the function ~(~o) is holomorphous, it can be continued over 

the whole complex plane, except for cuts along intervals 

Di : si _< Imw _< Yi+~, Rew = 0 (i = 0 , . . . , N  - 1~. 
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Equation (15) has a general solution in terms of MacDonald functions [9] 

PF = C1Ko(ar )  + C2Io(ar), 

where the constants C 1 and C 2 are determined from the boundary conditions (16): 

qF(- lo(or2)Ko(ar)  + Ko(c~r2)Io(ar)) 
PF = AKF~(I fo(ar~) l l (e)  + Kl (a) lo (ar ) )  " (21) 

If  the well operates with a constant yield q(t) = Q, it is easy to show that P = P(r) = X-  1Qln(r/r2). For the pressure- 

decay problem, we must set q(t) = QO(-O, where 0(t) is the Heavyside function. 

We define 

@ = p -  A - 1 Q l n ( r / r : ) .  

Then @F can be calculated from Eq. (21) if we set qF = Qi/(co - ie), which corresponds to q(t) = -QO(t). Here e 

is a small positive quantity which is set to zero in the final result. 

Now we calculate the intermediate asymptote of the pressure attenuation curve, when r 2 approaches infinity in Eq. (2 I). 
By using the asymptotic values of the MacDonald functions [9], we find 

-qFKo(ar )  
@F = Ah'F o I(1(o)" 

Then the problem of determining the pressure attenuation curve reduces to calculating the function ~o(t) = @ I r= 1' After we 

take the inverse transform, we obtain this function in the form 

-[-oo 

,:(t) = - ( 2 r r A ) - l Q  i / (w - i~)-l fl(,~)ei~tdw, 
- o o  

K0 (o) .fi (~) - 

/(F O~ /~'1 (Or)" 

(22) 

We recall the expressions for the MacDonald functions [9]: 

Ko(z) = - J ( z Z ) l n ( z / 2 ) + W ( z 2 ) ,  and K l ( z ) =  z - l (A ( zZ) ln  z+B(z2)) .  (23) 

Here J(z), A(Z), and B(z) are complete functions; J(0) = B(0) = 1; A(0) = 0; and W(0) = - C ,  where C is Euler 's  constant. 

The functions Ko(Z ) and KI(Z) have an infinite number of branches at z = 0. We will exclude these branches with a cut along 
the ray R e z  < 0, i m z  = 0. 

In order to integrate (22), we deform the integration contour in the upper half of the complex plane to avoid the 

singularities in the integrand. All singularities (poles and cuts) occur on the semiaxis Im w > 0, Re co = 0; therefore the 

integral (22) transforms to an integral along the contour C (Fig. 1): 
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f ~(t) i j  ,.'-1 k (~)  e i'~' a,,,. (24) 
c 

We now look for the asymptotic pressure attenuation curve for times large compared to the relaxation times Yi. 

Formally this can be done by setting t = ~ - t t ,  and K(t) = K,(6-t), where 6 is a small parameter and t, and K, are fixed, and 

by substituting these expressions into Eq. (24). Then we omit those terms in (24) which vanish as ~ tends to zero and derive 

a formula from (24) for r by replacingfl(r by the function 

- I n a + / 3  
f2(r -- I( F , 3 = In 2 - C. (25) 

Now we note that 

N - I  

( iwI(F(W))- '  = Z an(iw + ,sn)-' + bo; (26) 
n=O 

iw. N - 1 N 
l(F(W) A 1 - [ ( i w + s . )  H ( i a ; + y . )  - t ,  (27) 

n=0 n = l  

N-1  N 

where ai, b 0 > 0; b 0 = k l -1 ;  a 0 = 1; andA = H si - I  H 
n = l  n = l  

to the formula 

Yi" Substitution of Eqs. (26) and (27) into (25) and (24) leads 

C 

N - 1  I N - 1  N 1 

n=O n=O n = l  

(28) 

We integrate (28) term by term by using the theorem of residues and the auxiliary formulas [10] for a,b > 0: formula 
No. 3.352.4 

r162 _ _e.b Ei ( - a  b); 
a + z  

0 

(29) 

and formula No. 3.352.6 

V.p. +/~ - - =- e - a b  Ei  (a b) 
. /  O , - - Z  
0 

where Ei(z) is the exponential integral function. 

The integral of the type 

Ji =few'(/., + si)-tln(iw + si) dw, 
G 

presents some problems. It must be transformed to an integral along the contour C i (Fig. 2) and calculated using Eq. (29) and 
formulas for the exponential integral function [ 10]: No. 8.214. i: 

oo 

E i ( z ) = C + l n ( - z ) + ~ z n ( n n ! )  - t ,  z < O. 

Then we obtain the expression Ji = -27r exp(-s i t  ) (In t + C). After all calculations are done, we come to the formula 
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~(t) = QA-l(qal(t) + ~2(t)), 

N - 1  N 

T,(t) = 2- 'hot - '  ( Z  e x p ( - s , , ) -  ~-~exp(-ynt) )  + 
n = O  n = l  

N - 1  1 
+ ~=o ~-' a,~ exp ( - s , t ) ( 7  - ~ ~ exp ((si - s,~)t)Ei ((,,~ - si)t)-- 

N 

1 ~ 1 ~ exp ( ( y l -  sn)t)Ei((sn - yi)t)+ -~ ln(~-~)+~= 

1 N 
+ ~. ~ In(y,- s . )+  ~c),  

z = n + l  

1N-1 
~2(t) = ~ ~ a,  exp (-s,~t)In t. 

n ~ 0  

(30) 

In (30) the term r remains finite as t increases, while the term ~,2(t) increases logarithmically (remember that, for 
n > 0, products of the type Snt are assumed finite!). 

Thus, the function ,P2(t) defines the asymptotic pressure attenuation curve in the relaxation theory of percolation. 
Formally, the effect of the relaxation processes can be considered by introducing a multiplier of the type [1 + ~ ai.exp(-sit) ], 
where a i , s  i > 0, into the classical formula for the pressure attenuation curve with a logarithmic asymptote. 
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